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Abstract

Tennis is an extremely dynamic sport, with court positioning between opposing players and the
type, speed, and direction of their shots constantly changing and affecting the outcome of a point.
Much of this information is not yet captured in existing tennis analytics, due to the proprietary
nature and limited access of high-resolution spatiotemporal data currently collected at most major
tennis events. Using Hawk-Eye player-tracking data collected from Men's and Women's Singles
matches at the US Open between 2015 and 2018, our paper aims to build on preliminary research
in this area, specifically focusing on the “Estimated Shot Value” measurement described by Floyd
et al. (2019). We propose amending Floyd's stochastic model to incorporate information regarding
shot characteristics such as speed, spin, and type of shot. This allows us to better exploit the
capabilities of the Hawk-Eye system for meaningful analysis without sacrificing the simplicity of
the structure of the original model. We calculate our models using all player data, rather than
only data for a specific player, which allows us to focus on broader trends such as the relative
strengths of certain patterns of movement around the court.
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1 Introduction

The sport of tennis is a complex mixture of physical, mental, technical, and tactical aspects as
players on both sides of the net aim to gain control over the pace of the ball, their opponent,
and the momentum of the match. Historically not much attention has been devoted to under-
standing these interactions at a quantitative level. Much of the previous analysis has been based
on higher-level information that generally summarizes gameplay at a match or set level. These
include number of points won, serving percentage, winner and error counts, etc. While much
simpler to collect and understand, these statistics also overlook the richness of the data produced
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over the course of a tennis match, and thus limit the insights we can create about match play,
players’ abilities, and the underlying structure of the game.

One of the main reasons that little focus was given to collecting data at a more refined level
was the complexity of the task. Points in a tennis match are extremely fast-paced, and having a
human attempt to record information at a shot level rather than a point level would likely lead
to an unacceptable level of missing and/or inaccurate data.

However, in recent decades the Hawk-Eye system has been introduced. According to the Hawk-
Eye website, “Hawk-Eye has developed the most sophisticated vision processing technology in
sport which enables us to not only track balls to mm accuracy but also players..."” It accom-
plishes this by placing a network of six to ten cameras at various locations around the tennis
court, and using the different perspectives of these videos to track the players' locations at a rate
of 25 frames per second and to calculate the trajectory of the ball for each of its “arcs” (meaning
its path of travel between bounces or hits). When the system was first used in professional tennis
play in 2006, its main purpose was to check whether a ball was in or out during an on-court chal-
lenge, and to this day this remains its most well-known function. But the system has also proved
able to track additional data such as shot speed, spin, and outcome (i.e., winner vs. error). With
an electronic system in place that is able to record much of what would have been impractical
for a human to collect, Hawk-Eye allows us to dig deeper into tennis and begin to understand
some of the complex choices players make and their implications.

Even though Hawk-Eye was first used over 15 years ago, its use in tennis research and analytics
is still extremely limited for three reasons. First, the system is still not universally implemented,
with many clay court tournaments, including the French Open, continuing to check for marks in
the clay to determine whether a shot is in or out. This limits both the amount of data available
to work with and the types of insights we can gain (any work cannot be generalized to all court
surfaces or compare player behavior on clay, for example). Second, Hawk-Eye is a proprietary
system operated under an agreement at each tournament, so much of the data recorded are
available exclusively to that tournament’s organization, which also limits the sample size that any
one group is able to work with. Finally, the high cost of the system means that researchers or
smaller tournaments are not able to experiment and collect data independently. Although Mora
and Knottenbelt (2016) demonstrated a way to collect similar spatiotemporal using a lower-cost
system of cameras and computer vision, this has not been widely implemented in a professional
setting and does not contain the same richness as the Hawk-Eye datasets.

This paper aims to build on existing research in tennis analytics to better incorporate the in-
formation captured by Hawk-Eye. Specifically, we choose to focus on modeling individual tennis
points and the value of a player’s strategy and shot choice as captured by Floyd's (2019) “Ex-
pected Shot Value” (discussed further in section 2.1).

In Section 2, we layout the background of existing research in this subset of tennis analytics.
We describe our data source and processing in Section 3 and general methodolgy and exten-
sions in Section 4. We explore our various models in Section 5, before exploring our results and
potential for future work in Sections 6 and 7.
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2 Background

Despite the limited availability of Hawk-Eye data, there is existing research that focuses on tennis
analysis on a point-by-point level and has a large potential to benefit from additional information
about shots in those points. This is exemplified in Bevc (2015), who enhances a Hierarchical
Markov chain model in order to more accurately predict the outcome of a tennis match by incor-
porating data from that match rather than relying solely on historical data. Bevc remarks that
while they are unable to obtain Hawk-Eye data, it could allow them to expand their model to a
sub-point level and include factors such as court positioning and shot power to further improve
predictions.

There are also some papers that were able to gain access to Hawk-Eye data samples, pre-
dominantly from the Australian Open between 2012 and 2014, to use in their studies. Wei
et al. (2013b) utilize a Bayesian Network to understand player behavior and what conditions best
allow a given player to hit a winner (as they put it, that player’'s “sweet spot™”). The same authors
(2013a) also employ a similar framework and online model adaptation method to explore player
behavior and predict shot locations. Wei et al. (2015) use a latent factor model to represent
the serving “style” of a player in order to predict their most likely serve given the context of
the match. Finally, Wei et al. (2016) use a similar method as their 2015 paper to predict shot
and point outcomes, and include “style” to improve these predictions for specific players. These
papers demonstrate the versatility of the Hawk-Eye data to help shed light and various different
aspects of tennis strategy.

2.1 Floyd and Expected Shot Value

One paper that uses Hawk-Eye data for sub-point analysis that we specifically focus on in this
paper comes from Floyd first in his thesis work at the Rochester Institute of Technology and then
published in the Journal of Quantitative Analysis in Sports (Floyd et al. 2019). Floyd et al. focus
on modeling a tennis point as a Markov chain of independent shots to calculate the expected
value of points a player would gain given their and their opponent’s court position. This was
inspired by previous work done on basketball, where the expected value of different passes, player
possessions, and court locations has been analyzed (Floyd et al. and references therein).

The model proposed by Floyd et al. only incorporates player court locations as states in the
Markov model, but does not take advantage of additional information that Hawk-Eye provides
that could enhance these predictions. For example, incorporating the type of spin on the ball,
the speed of the shot, how long the point has been played, and other physicality information
could strengthen this model and provide greater insight into the evolution of a point and player
strategy.

2.2 The Physicality Metrics of Tennis

In order to inform which aspects of the Hawk-Eye data might be most useful as part of this model,
we also investigate the physical impact of a tennis match on players. Although all players will
likely experience general physical fatigue, it is important to understand how this develops over the
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course of a match. Rowland (2014) writes about average point length, number of shots, distance
ran, etc., which could help us establish baselines to gauge physical exertion during a specific point.
Reid and Duffield (2014) also explore the physiological profile and movement characteristics of
tennis matches and relate these to the development of fatigue. Finally, Fernandez-Fernandez et
al. (2009) review many physical and physiological responses during match play at a deeper level,
including temperature, court surface, intensity, heart rate, oxygen intake, and perceived exertion.
These measurements are not taken during professional game play however, so we should be
cautious when considering this in the context of our given data.

3 Data

The Hawk-Eye database structure can be split into three major sections, each of which focuses
on a different aspect of a tennis point. First, the locations of each player are recorded at a rate
of 25 frames per second and stored as an (x, y)-coordinate pair measured in meters as .prj files.
Second, we have information about the location of the ball at key points of each arc and the
complete trajectory calculations used in line-call challenges as .trj files. Third, aspects about
player shots including speed, spin, outcome, and duration are contained as .xml files.
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Figure 1: Hawk-Eye Database Structure

4 Emery



Augmenting Tennis Point Stochastic Modeling Utilizing Spatiotemporal Shot Data

The data we use come from the USTA and contain anonymized Hawk-Eye data recorded during
the US Open between 2015 and 2018. For our research, we use the raw database files that are
updated over the course of the matches rather than the above listed file types. This necessitates
some additional processing on our end initially to order the data and more easily group and com-
pare certain attributes.

The dataset is then cleaned to filter out doubles matches (player position tracking is not currently
supported when there are multiple players on one side of the court) and older matches that are
not bound by a service-level agreement between Hawk-Eye and the USTA. Matches that are not
contained in all three sections of the database are also removed to ensure a complete set of data
for each match we used in our analysis.

Furthermore, cleaning on a point level is performed to remove data that shows the same player
hitting multiple shots in a row, since this is not a valid scenario in tennis. Our analysis is de-
pendent on points being internally consistent in order to create meaningful Markov chains over
players' shots. We additionally filter out extraneous shots (for example, shots recorded after a
shot had already gone out of bounds, thus ending the point) and points where the outcome
(winner vs. error) did not align with who scored the point, as this also signals loss of data. Over-
all, this affected approximately 20% of the points in our data and 27% of the shots, and thus
removing these points does not pose a significant hurdle to our work.

After this cleaning, our dataset contains 701 unique matches. Since the dataset is anonymized,
it is currently not differentiated between men's and women's matches, although this could be
achieved by analyzing the number of sets in each match. The matches contain 144,695 points and
473,401 shots. The data also encompass a total 366 of unique players in 690 unique matchups.
Due to the larger nature of our dataset, we might be able to overcome the issue of model com-
plexity mentioned in other papers that previously used Hawk-Eye data: since their match samples
are limited, the level of complexity they can incorporate into their models is also limited.

In order to perform our exploratory analyses and construct our model, we perform additional
computations with the Hawk-Eye data. These include calculating the distance a player ran dur-
ing a point from the position (.prj) data to understand how fatigue in a point might affect the
outcome. We used player and ball location (.xml) data to establish which zone of the court the
player was in when each shot was hit, as setup in the Floyd et al. model.

In order to replicate and expand upon the Floyd et al. methodology, we organize our data into
three tables, one focusing on player position-tracking, one on shot-level information, and the last
on point-level information.

The position-tracking table is used to establish the zones of each shot and ultimately the strike
and return states, which are based on the relative positioning of players on the court. This also

lets us calculate the transition probabilities between these states.

The point-level table is used to group the shots and contains information regarding who won
each point. This allows us to assign strike and return categories. This also provides information
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regarding whether a serve was in or out, which helps us filter out invalid data.

The shot-level table provides us with information to order shots within a point, which also helps
establish strike and return categories. It also includes shot type, spin, and speed, which we use
to augment the Floyd et al. model and adjust category weights to more accurately represent the
values of various shots in tennis.

4 Methodology

4.1 Markov Chain Models

Markov chains are an effective way to model a sequence of events or states (the status of the
point after each shot) over the course of a sequence (the point itself). By definition, this process
is stochastic, meaning that there are probabilities associated with moving from the current state
to any other potential state. This type of model also makes the assumption that these transition
probabilities rely only on the present state, and are independent of any past information in the
process (this is called the Markov Property). An example of a Markov chain for a tennis point
can be seen in Figure 2.

Cservershot Creceivershot

Cend ‘Out-of-Bound5| | Net| | No Return ‘

Figure 2: Markov chain model of a tennis point

This final assumption holds reasonably well in tennis, with some modifications and additional
assumptions. Shots in tennis do not occur at equal intervals, but rather vary based on the type,
speed, spin, and location that the ball is hit to. Because of this, we cannot fully assume this
process will have the properties of a continuous-time Markov chain. Rather, we assume that the
process is Semi-Markovian, and that the process is memoryless only when there is a jump to a
new state (when the next player hits the ball).

This limits our ability to analyze the point while the ball is moving between the two players
(and our chain becomes closer to a discrete-time chain), but still allows us to gain insight into

the players’ dynamic and interactions in terms of their shot choices and movements.
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4.2 Floyd’s Original Approach

In his publications, Floyd sets up a Markov chain with coarsened states representing the server's
shot, the receiver's shot, and the end of the point. He defines the point’s end as either the ball
going out-of-bounds, into the net, or not being returned by the opponent. This structure both
satisfies the assumptions necessary in order to use a Markov chain model, and makes interpretation
much clearer and more meaningful. Due to these qualities, our model maintains this same general
structure.

Figure 3: Floyd et al. Court Zoning System

The next step is to establish states to describe each shot from each player’s perspective. Floyd
et al. focus on relative player positioning, and thus discretize player court position into a zone
system. In his thesis he uses 18 zones, and in the publication he describes 15 zones (as shown
in Figure 3), removing some level of detail from the area surrounding the baseline. All possible
states for groundstrokes are thus described by the combination of the zones for the “striker” (the
player hitting the current shot) and the “returner” (the player receiving the current shot), with
separate states describing first and second serves and returns as these shots are expected to have
different qualities and a different distribution from groundstrokes.

Represented mathematically, we have that the state space of shots that end the point are:
Cena = {out-of-bounds, net, no return}
with associated point values for strikers (PVg) and returners (PVy):
PVg(out-of-bounds) =0  PVz(out-of-bounds) = 1
PVs(net) =0 PVg(net) =1

PVs(no return) =1 PVp(no return) =0

The remainder of the state space falls into Cghot = {Cserversnot U Creceiversnot },» Which repre-
sents states where the point is still in play. This includes all of the zone combinations and first
and second serve states as described in the previous paragraph.
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Next, Floyd et al. describe a set of possible categories that each shot falls into from both the
striker and returner’s perspective, including things such as pure winners (shots that lead directly
to a point for the striker), shots that continue play, set-up shots that lead to pure winners or
errors, etc.

Strike Category Symbol Weight  Definition
(Asc) (wsc)

Pure Winner Apw 1.00 In-bounds strike which is not
returned

Set-Up of Pure Winner Asupw 0.75 Strike by winning player prior
to Apy

Forced Losing Strike AFLS 0.75 Strike by winning player prior
to Aig

Non-Impactful Ayt 0.50 Strike which does not fall into
other categorizations

Set-Up of Opponent’s Pure Winner || Asyopy 0.25 Strike by losing player prior to
)\PW

Losing Strike ALs 0.00 Strike which goes out-of-
bounds or into the net

Table 1: Original Floyd et al. Strike Categories and Weights

Return Category Symbol Weight  Definition

(Age) (wre)
Returned Pure Winner ARPW 1.00 Returned Apy
Returned Set-Up of Pure Winner ARSUPY 0.75 Returned Agypy
Returned Forced Losing Strike ARFLS 0.75 Returned Agig
Returned Non-Impactful Strike AR 0.50 Returned Ayp
Returned Set-Up of Opponent's | Agsuopw 0.25 Returned Asyopy
Pure Winner
Returned Losing Strike ARLS 0.00 Returned A g
Not Returned ANR 0.00 Unable to return

Table 2: Original Floyd et al. Return Categories and Weights

They assign a weight to each category to represent the expected point value of hitting that shot,
and these weights are ultimately critical to the Expected Shot Value calculation. This is because
the authors are able to represent this Markov chain as an equation rather than constructing the
actual model.

Z RV(cy) P + Z PVs(cy) Py if the player is the striker
CwECshnot CyECend

ESV(cy,) =
Z SV(cy) Py + Z PVg(cy) Py  if the player is the returner

CwE€Cshot CyECend
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In these equations, the Serve Value (SV) and Return Value (RV) are the weighted averages
of the weights for the types of shots hit from a current strike state (%) or return state (5%).

1855 2sc |
= D Wi S S|C
AscE€Asc s

IRgR ge|
= Z Wge |§' T:
Arc€Arc

and the transition probabilities (P,,;) are defined as the observed transition frequency in the
data of going from state u to w. In the original model, this is conditioned on a certain player
being the striker (since the striker is in control of the ball at this point), but since we are not
calculating ESVs for specific players this is omitted here.

NUW

Puw —
Z Nuw’

For strikers, the ESV equation can be interpreted as the point outcome for each end state
weighted by how often that state is reached from the current state, plus the anticipated point
outcome given that the point continues and the striker now becomes the returner. This antici-
pated value is calculated as the weighted average of all the category weights (accounting for the
frequency that each type of shot is hit by that player in the given state) as defined in Table 2
above. The process is the same for returners, except we calculate the anticipated point outcome
using the strike values instead of the return values.

4.3 Our Proposed Modifications

We feel that the most potential for improvement in this model lies in the strike/return categories
and weights that Floyd et al. define. The Hawk-Eye data provide us with much more information
than player positioning. We can analyze how deep into a match the players are (in terms of how
many points, games, etc. have already been played) in order to factor in the idea of physicality.
We can also break down nuance in shot choice by incorporating metrics about speed and spin.
On a serve, a faster shot is likely harder to return, and shots that have topspin are often more
aggressive than those with backspin.

We incorporate these attributes by creating new categories and adjusting their associated weights
to more accurately reflect how much these shots contribute to a won or lost point. As with
the original model, there is still much gray area in terms of determining the appropriate weights
for each type of shot. We attempt numerous different combinations of variables and compare
the Expected Shot Values produced by each for similar points in order to assess their performance.
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Since this statistic is not exactly equivalent to the probability of winning a point, we do not
have an objective metric against which to measure accuracy. Alternatively, we rely on the vali-
dation method used by Floyd et al. by examining the correlation between ESV and win rate to
ensure that our models do not present any significant performance drop compared to the Floyd
et al. model. Instead of using Leave-One-Out-Cross-Validation (LOOCV) however, we choose to
calculate the correlation coefficient based on the training data. Not only does this save us time
in terms of computation, but we also do not expect it to affect the nature (i.e., linear vs. curved)
of the relationship, which is what we are interested in for our validation.

5 Analysis

5.1 Establishing a Baseline Model

The first step of our process is to recreate the original Floyd et al. model using our data. This
allows us to effectively examine the impact of our proposed changes on individual points, and
identify any improvements in the correlation that suggest our models better fit the underlying
strategies of a point in tennis.

Our methodology splits the model building into five main steps. We start by feeding in our
three main data tables (position-tracking, shot-level, and point-level information), and then clas-
sify the court position for each player at each shot based off the original paper’'s zoning scheme,
and combine this information with serving data to assign the strike and return states for each shot.

Second, we assign each shot a category based on that shots outcome as shown in Tables 1
and 2. This is done by isolating individual points and determining how far from the end of the
point each shot is and which player ultimately wins the point. The weights for each strike and
return category are also fed into our methodology to be used in our calculations.

Third, with the states assigned to each shot we calculate the overall transition probability matri-
ces. Unlike Floyd et al., we create two matrices: the probability of going from a strike state to
the next strike state and the probability of going from a strike state to the next return state. We
choose to do this because the striker is always in control of the shot, but depending on whether
we are utilizing the strike value or return value in calculating the Expected Shot Value influences
the state of the next shot we consider.

Additionally, instead of calculating these matrices for a specific player, we do it for our data
overall. We do this so that as we create more strike and return categories in our proposed mod-
els, we still have a sufficient amount of data in each bin to perform our calculations. While this
does not focus on individual players like the Floyd et al. structure, it does let us test our proposed
changes. This structure also requires only small changes to be able to analyze individual player
performance.

Finally, we calculate the strike and return values as the weighted average of the strike and
return categories, and for every shot calculate the Expected Shot Value for both players utilizing
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the summations described by Floyd et al.

5.2 Generalizing the Process

We next establish generalized functions that assign strike and return categories, and their respec-
tive weights, that can be fed into this methodology. This allows us to quickly make changes and
test new models. This is where we feel we can make the most effective use of the Hawk-Eye data
currently. By factoring in data regarding shot type, spin, and speed, we might be able to more
accurately assign weights and improve the models.

5.3 Adding Spin

The first factor we consider incorporating is the spin of the shot. In the Hawk-Eye data, the
spin of the shot is encoded as both a numeric variable (in RPM) and a nominal variable with
categories TOPSPIN, BACKSPIN, FLAT, and NOSPIN. In order to maintain a reasonably small space
of strike/return categories and weights, we choose to incorporate the categorical variable into our
model.

We theorized that in most cases, topspin shots are a more aggressive, offensive shot, and thus
should have a higher weighting overall. Backspin is usually a more defensive shot, and thus should
have a lower weighting overall. Flat shots lie somewhere between these two: in cases where it
forces an error or sets up a pure winner, we weight it similarly as topspin shots since a flat shot is
used to change pace and try to speed the ball past an opponent. But in cases where it set up an
opponent’s pure winner, we weight it similarly as backspin shots, as it is likely a mishit or more
defensive shot. NOSPIN shots are left as the default weighting. Specific weights for this model
can be found in Table A.1.

Ball Spin (less than [10,000| RPM)

Spin, in RPM

Figure 4: Histogram of shot spin, in RPM

Looking at the spin in RPM, there is a large spike of NOSPIN values that can be accounted for
by serves (Hawk-Eye does not attach a specific spin type to serves). This is removed in Figure 4.
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Additionally, we notice a small spike of very negative shot RPMs (near —6000 RPM). This
anomaly could be an error in measurement from Hawk-Eye, or it could represent a different type
of shot: a drop shot. We test this idea by creating a separate model and adding a drop shot
category to the existing spin categories. We weight this category the same as topspin shot, since
it is also an offensive shot. Specific weights for this model can be found in Table A.2. Examin-
ing this grouping of points further to uncover whether these are in error or to explain how this
grouping is so close together is an avenue for future work as well.

5.4 Factoring in Speed

Next, we generate a model that factors in the speed of a shot. We break this down between first
serves, second serves, and groundstrokes. Each of these shot types is unique, so to accurately
represent the tennis point it makes sense to assign different values to different speeds based on
the shot type. In order to keep a manageable category space, we also discretize the speeds instead
of considering them as having continuous values.

From analyzing distributions of our data and online sources, we split serves into fast and slow
categories, and other shots into fast, slow, and average categories. We split first serves at 110
mph and second serves at 90 mph. Other strokes are defined as fast if they are greater than 85
mph and slow if they are less than 50 mph. Specific weights for this model can be found in Table
A.3.

However, we realize that groundstrokes also have a lot of nuance in terms of speed. Some-
times shots are intentionally hit slower in order to disrupt the pace of the point, and these types
of shots should not be given a lower weight. Serves, on the other hand, do not exhibit this same
variation (except in rare cases), so assigning more value based on higher speed makes more sense.

Thus, we also examine a model that removes our speed weightings for non-serves and instead
assigns these shots the default weighting. Specific weights for this model can be found in Table
A.4.

5.5 Combining Features

In order to examine the interactions between speed and spin, we set up two additional weighting
systems. For the first model, we attempt to isolate what we think might be the most meaningful
interactions, so as to not expand the number of categories excessively. This leads us to focus on
serve speed (as described in the previous section), fast topspin shots as offensive shots (with a
higher value attached to them), and slow backspin shots as defensive shots (and a lower value).
Specific weights for this model can be found in Table A.5.

The second considers only non-serves (since serves do not have spin recorded), but considers
more combinations of speed and spin. This follows our general theory that topspin shots and
faster shots should have higher weights, and thus orders shot types from highest value to lowest
value: fast topspin, fast backspin, slow topspin, slow backspin. Again, all other shots are assigned
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the original default values from the Floyd et al. paper. Specific weights for this model can be
found in Table A.6.

5.6 Considering Shot Type

When considering forehand vs. backhand, this choice is most meaningful in the context of other
features such as spin. For example, while a backhand slice is a common shot (and in many cases
more defensive), a forehand chip is much less common (and could be indicative of a drop shot or
a shot intended to change the pace of the point). In this sense, we set up a model that weights
both topspin and forehand backspin shots with higher values, and backhand backspin shots with
lower values. Specific weights for this model can be found in Table A.7.

One additional idea for future work is to examine shots like inside-out forehand, where the player
hits a forehand on the side of the court that normally corresponds to their backhand. However,
knowing that requires knowing whether a particular player is left-handed or right-handed, which
we do not have in our current anonymized dataset. If the players are known however, this infor-
mation would be easy to collect and incorporate into a model.

Alternatively, we can attempt to predict handedness by examining the types of shots that a
particular player hits from each zone of the court. For right-handed players, the majority of
forehands should come from zones 6, 9, 12, and 13, and backhands from zones 7, 11, 14, and 15.
We see an example of this in Table 3, and we can infer that dGe.Player309 is right-handed.

Zone
Court Left-Side Court Right-Side
Shot Type 7 11 14 15 6 9 12 13
Forehand 2903 9374 6369 141 3520 18312 370 21326
Backhand 3518 33900 23943 893 667 1872 91 2952

Table 3: Shots by Zone for dGe.Player309

5.7 Estimating the Weight of an Non-Ilmpactful Shot

Floyd et al. define a non-impactful shot as a default category, meaning that it does not lead to
the end of the point or set up a winner for either player. In essence, these shots merely continue
the point, and thus are assigned a pure neutral weight of 0.5.

However, by prolonging the point, a player increases the amount of fatigue they experience
over time, which can make it harder to hit winning shots. Additionally, by continuing the point
a player gives their opponent another opportunity to hit a winner against them. Both of these
factors suggest that the weight for this type of shot could be less than 0.5.

Our data also support this. For the strike category NI, the proportion of these shots that the

striker eventually won is 0.4333, and for the return category R, the proportion of these shots that
the returner eventually won is 0.4262. Using these values as a more accurate weighting estimate,
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we substitute them into the original Floyd et al. weight set and reconstruct the model. The full
set of weights for this model can be found in Tables A.8 and A.9.

6 Results

6.1 Validation and Model Strength

We validate our models by examining the correlation coefficient between Expected Shot Value
and the win rate. Since every point is either won or lost (and thus has a win rate of either 1 or
0), we calculate win rate by binning the shots based on their ESV value and treating the win rate
as the percentage of shots for which the striker won (when looking at Strike ESVs) or lost (when
looking at the Return ESVs). We define 11 bins, with breaks at 0.05, 0.15, 0.25, etc.

In the original Floyd et al. methodology, the authors use one plot to demonstrate the corre-
lation between ESV and win rate. However, we feel it makes more sense to examine Strike and
Return ESVs separately. This is because the underlying calculations of these two are different:
one relies on Return Value and the other Strike Value, and also the win rate for one is calculated
on the striker winning the point whereas the other is based on the striker losing the point. For
these reasons, we create separate plots to examine the correlations, as seen in Figure 5.

Strike ESV Validation Return ESV Validation
Original Model Original Model

Number of Shots.
& 50000
- 100000

Number of Shots
& 40000
& 50000
@ 120000
@ 150000

Win Rate

& 150000
@ 200000
@ 250000

b 100 . 5 50
ESV EsV

Figure 5: Floyd et al. Model Validation, with 95% confidence bars shown

Because we are treating each bin as an individual data point when calculating the correlation
coefficient, this method is highly influenced by shots with very high or low ESVs. Because there
are very few of these points, the win rate might not truly reflect what the actual win rate for
points in that bin is, and this can affect our assessment of model strength and accuracy.

An example of this from our data is in the validation of Return ESVs in the > 0.95 bin in
Figure 5 above, where a player lost a point during which they had a very favorable shot con-
dition. Since this is the only shot in the bin, the win rate is 0, and this significantly weakens
the correlation, as seen in Table 4. Moving forward, we might consider using a weighted R? to
decrease the influence of outliers by giving data points more influence if they contain a greater
number of shots.

Examining these plots, even if we ignore the outlier data point, the validation plot for Return
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ESV appears to follow a curved pattern. However, the relationship is strongly linear for Strike
ESV. We theorize this difference might be due to the fact that for any given shot, the striker
is in control of the point, whereas the returner is at their mercy, and this might strengthen the
association between ESV and win rate for strikers and weaken it for returners. We thus choose
to focus on Strike ESV R? in comparing model performance.

| Model | Strike ESV R? Return ESV R? |
Shot Type + Spin 0.9820 0.3633
Spin + Dropshot 0.9815 0.3709
Spin 0.9814 0.3706
Estimated Neutral Shot Weight 0.9762 0.94861
Floyd et al. (Baseline) 0.9758 0.3864
Serve Speed 0.9758 0.3864
Full Speed 0.9756 0.3837
Full Speed + Spin 0.9756 0.3850
Non-Serve Speed + Spin 0.9755 0.3841

Table 4: Model Correlations, ordered from highest to lowest Strike ESV

We see that the relationship between Strike ESV and win rate for each of these models is strong,
and by examining the validation plots in Appendix A.2 we see that the plots are all strongly linear.
We see a jump in % when looking at models that factor in spin, which might be partially due
to the fact that these models move data points from the lowest bin to the second lowest bin.

Strike ESV Validation Strike ESV Validation
Original Model Shot Type + Spin Model

Number of Shots
@ 50000
@ 100000

Number of Shots
2 & 50000
]

& 050- 100000
é @ 150000 < :
150000
@ 200000 =
@ 200000
@ 250000 .

ESV ) ESV

Figure 6: Floyd et al. Model vs. Shot Type + Spin Model Validation

Since the win rate of this lowest bin originally had a higher win rate, this suggests that we might
have uncovered a pattern that more accurately models the mechanics of a tennis point. However,
we still want to check this change using a weighted R? to ensure that this improvement is not
purely due to outliers.

Examining the Strike ESV plots in Appendix A.2, we notice they are all extremely similar, and

In this model, the erroneous example that has a high Return ESV and zero win rate is pushed to the next
lowest bin, thus significantly increasing R? as this shot is no longer in a bin by itself.
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there is one data point with an ESV roughly 0.6 that consistently has a higher win rate than
what the linear model would predict. This suggests that there might be an underlying structure
in these shots that our models do not capture. We examine this further in the next section.

6.2 Examining Win Rate Residual

In all of our models, the bin of shots with Strike ESVs between 0.55 and 0.65 have a higher
average win rate than what would be expected from our linear model validation. Digging deeper
into these shots to understand why this is the case, we examine potential patterns that could be
targeted in future iterations of this model.

We start by examining what types of shots we are looking at. Since our model averages over all
data, the ESVs do not differ for shots in the same state. The states, number of shots, and Strike
ESVs are shown in Table 5.

’ Location State H Strike ESV Number of Shots ‘
1S 0.5657 104056
2-5 0.5958 3
2-9 0.5719 102
2-11 0.6141 293
2-13 0.6339 150
3-2 0.5730 84
3-4 0.6375 5
3-9 0.6144 202
3-11 0.5888 240
6-2 0.5770 98
6-13 0.5860 1049
6-14 0.5946 1005
7-12 0.6253 104
7-13 0.5768 1141
7-14 0.5826 2141
0-1 0.5685 4
9-4 0.6344 6
11-1 0.5737 6
12-12 0.5651 3

Table 5: Floyd et al. Model Strike ESVs [0.55, 0.65]

We find that this bin includes all of the first serves in our data, and since there are so many shots
from this state, it dominates all of the other shots in this bin (of the 110,692 shots, only 6,636
are not serves).

When we remove the first serves, the average Strike ESV for the bin rises from 0.5670 to 0.5881,

and the win rate drops from 0.7106 to 0.6698, which brings the data in the bin more in line with
our linear model (see Figure 7).
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Strike ESV Validation
Original Model

Number of Shots
. 50000
@ 100000
W 150000
B 200000
8 250000

Win Rate

ESV

Figure 7: Floyd et al. Model Validation, with the bin that has First Serves excluded shown in red

This suggests that there is still an underlying structure around serves that future models could
address. Since we notice this bin is above the trend line in every model, we note that none of our
existing solutions effectively address the issue. This could be because of missing data associated
with serves (Hawk-Eye does not measure spin on serves), or because our current models only give
above average weight to serves that produce a pure winner, set one up, or force an opponent'’s
error. It is possible that a good serve sets up an advantageous position four or five shots into the
point, which is beyond the scope of our current model. A good first serve also gives the server a
level of control throughout the point, a concept that a future model can try to encode.

6.3 Potential to Incorporate and Analyze Physical and Mental Factors

In addition to information related to the actual shots, Hawk-Eye also provides physical informa-
tion about the players that can be useful in determining how good or bad of a shot they hit under
the current match circumstances. We explore possible extensions below.

Some physical information is already encoded in our models, and thus do not need to be ex-
plicitly represented. One example of this is distance and direction ran between shots. Since the
states of our Markov chain model are based off of court positioning, the transition between states
effectively accounts for the distance a player moves to hit a shot. To understand the effect of
distance and direction ran on a player’s hitting ability, we can filter points based on the previous
return zone and the current strike zone and examine the distribution of categories these shots fall
into.

Table 6 demonstrates an example of this. The first two rows demonstrate how charging the
net (forward movement) appears to have an average shot weight above 0.5 and is thus an advan-
tageous choice under the right circumstances. However, we also see how increasing the distance
the player has to move decreases the advantage. We also see the negative impact of being forced
to retreat from the net, as well as being dragged across the baseline or backcourt.
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Movement PW SUPW FLS NI SUOPW LS Mean
and Zones Weight

Baseline to 2072 439 900 785 592 1045 0.6212
Net:
(9—-11) —
(1-8)
Backcourt to 335 94 204 226 246 329 0.5112
Net:

(12 - 15) —
(1-38)
Retreat: 13 7 19 85 36 77 0.3544
(1—4)—
(9 —15)
Cross Court: 188 92 280 896 177 488 0.4523
9 — 11 or
11 =9 or
12 — 15 or
15 — 12

Table 6: Shot Distributions for Different Types of Court Movement

Additionally, our models currently do not incorporate the notion of fatigue. Hawk-Eye provides us
with information about how long a match is underway, how many shots are in the current point,
and how far a player runs over the course of a match. In addition to this, in a non-anonymous
context we can factor in information regarding temperature and a specific player's conditioning.

All of these factors can impact the weighting systems used in our models. We feel that while
using constant weights is good for understanding the overall value of a particular shot, it is more
realistic that these weights change over the course of a match to reflect the players’ physical con-
dition. For example, hitting a weaker shot should have a lower weight when a player is fatigued
as it will be even harder in this state to retain a hold on the point when giving the opponent
an easier setup. Conversely, if the opponent is in a fatigued state, hitting a weaker shot might
not have as low a weight as it will take less energy to produce a winning shot. By incorporat-
ing physicality data, a future model could develop a methodology to estimate how much these
weights should change over the course of a match. By combining this with player physicality
profiles, such as that developed by Spence and Kovalchik (2019), this could also be adjusted to
each player personally.

Finally, although the mental aspects of the game are much harder to measure quantitatively,
future work could attempt to incorporate the idea of momentum and control by further adjusting
weights based off of streaks of points won or above average shots hit (in effect, trying to deter-
mine if a player is "in the zone”). While these ideas add significant complexity to the existing
models and thus are beyond our current capacity to analyze efficiently, future work with greater
computational resources could consider these directions to tackle more nuanced aspects of tennis.
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6.4 Adjusting Player Comparison to Mean Performance

In their original paper, Floyd et al. compare player performance to the average as one application
of Expected Shot Value. They do this by selecting a specific zone for an opponent to strike from,
and calculating the Return ESV for every possible zone for our target player. They do this as
well for all other players, and compare the average of these ESVs to our target player to assess
where their strengths and weaknesses lie.

Our models have combined the data in a new way, aggregating across players and thus defining a
different concept of the “mean” that might highlight different features than the original method.
By combining our process with the individualized one utilized by Floyd et al., our work possesses
the potential to augment existing player analysis tools and make recommendations on which court
positions and shot types are the strongest for a particular player and which can be focused on
improving.

7 Conclusion

In Section 6, we demonstrate the validity of numerous extensions to the original Expected Shot
Value estimator proposed by Floyd et al. By leveraging a larger pool of data and aggregating
over all players, we achieve a stronger linear correlation between Expected Shot Value and win
rate, as well as a relationship that is closer to 1:1 than Floyd et al. achieve. Not only does this
validate the model, it shows how at scale we might be able to improve performance.

We also uncover additional extensions and underlying patterns that could be avenues for fu-
ture research. These include improvements to how serves are modeled (Section 6.2) and how
physicality over the course of a point and match are factored into the ESV calculations (Section
6.3). We finally show how we can use our ESVs to define the average player in a different way
than Floyd et al., and thus add an additional perspective to help identify player strengths and
weaknesses and guide player development strategies.

There are many aspects of the original Floyd et al. methodology that we were not able to
focus on in this paper, and that are still open questions beyond those that we have posed above.
The weighting systems we use remain arbitrary (except for that referenced in Section 5.7), both
in terms of the default values and the size of the changes between various combinations of shot
speed and spin. Future work could devote resources to better estimating these weights, and per-
haps interesting findings lie in the magnitude of the differences between these weights, providing a
quantitative value to the question of how much better a certain shot type is compared to another.

We recognize that this paper largely relies on existing research in its methodology and analy-
sis, but we feel that the exploration of these modifications can yield important improvements to
our understanding of tennis. We cannot change the overarching mechanics of how the game is
played, but by honing in more on nuance we can recommend small changes that will maximize
impact. The sport is built on a complex interaction between not only court positioning, but also
shot choice, physical endurance, and mental stamina. While all of these factors cannot currently
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be modeled, with increasingly rich data we are starting to capture more and more detailed aspects
of these interactions. We hope that our work provides a basis for how this data might be better
utilized and leveraged toward this end in the future.

A Appendix

A.1 Model Weighting Systems

When reading these tables, the original strike and return categories established by Floyd et al. will
comprise each column, with our modifications (and the corresponding option code) listed in each
row. The weights in each cell represent the weight for the combination of these two factors. All
direct winners will always have weight 1 and all direct losers will always have weight 0, and thus
are excluded from these tables.

Similar to Floyd et al., we also assign our weights in a subjective fashion. Using the original
set of weights as our baseline, we adjust 0.05 up or down depending on whether we judge a
type of shot to be better or worse than average. The only model this does not hold for is the
Non-Serve Speed + Spin Model, where we establish four different levels of shot performance.

A.1.1 Spin Model

Asupw / >\FLS/ ANt / Asuopy /
ARSUPW >\RFLS )\R ARSUUPW
Topspin Shot (-T) 0.8 0.8 0.55 0.3
Backspin Shot (-B) 0.8 0.8 0.55 0.3
Flat Shot (-F) 0.7 0.7 0.45 0.2
No Spin (-N) 0.75 0.75 0.5 0.25
Table A.1: Strike/Return Categories and Weights
A.1.2 Spin + Dropshot Model
Asupw / >\FLS/ ANt / Asuopy /
)\RSUPW >\RFLS )\R ARSUUPW
Topspin Shot (-T) 0.8 0.8 0.55 0.3
Backspin Shot (-B) 0.8 0.8 0.55 0.3
Flat Shot (-F) 0.7 0.7 0.45 0.2
Drop Shot (-D) 0.8 0.8 0.5 0.2
No Spin (-N) 0.75 0.75 0.5 0.25
Table A.2: Strike/Return Categories and Weights
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A.1.3 Full Speed Model

)\SUPW/ AFLS/ )\NI / ASUDPW/

)\RSUPW ARFLS )\R ARSUUPW
First Serve, > 110 MPH (-1SF) 0.8 0.8 0.55 0.3
First Serve, < 110 MPH (-1SS) 0.7 0.7 0.45 0.2
Second Serve, > 90 MPH (-2SF) 0.8 0.8 0.55 0.3
Second Serve, < 90 MPH (-2SS) 0.7 0.7 0.45 0.2
Other Shot, > 85 MPH (-F) 0.8 0.8 0.55 0.3
Other Shot, < 50 MPH (-5) 0.7 0.7 0.45 0.2
Other Shot, [50, 85] MPH (-A) 0.75 0.75 0.5 0.25

Table A.3: Strike/Return Categories and Weights
A.1.4 Serve Speed Model

Asupw / >\FLS/ ANt / Asuopy /

)\RSUPW ARFLS )\R ARSUUPW
First Serve, > 110 MPH (-1SF) 0.8 0.8 0.55 0.3
First Serve, < 110 MPH (-18S) 0.7 0.7 0.45 0.2
Second Serve, > 90 MPH (-2SF) 0.8 0.8 0.55 0.3
Second Serve, < 90 MPH (-2S8) 0.7 0.7 0.45 0.2
Other Shot (-A) 0.75 0.75 0.5 0.25

Table A.4: Strike/Return Categories and Weights
A.1.5 Full Speed + Spin Model

Asupw / >\FLS/ ANt / Asuopy /

)\RSUPW ARFLS )\R ARSUUPW
First Serve, > 110 MPH (-1SF) 0.8 0.8 0.55 0.3
First Serve, < 110 MPH (-18S) 0.7 0.7 0.45 0.2
Second Serve, > 90 MPH (-2SF) 0.8 0.8 0.55 0.3
Second Serve, < 90 MPH (-2S8) 0.7 0.7 0.45 0.2
Topspin Shot, > 85 MPH (-TF) 0.8 0.8 0.55 0.3
Backspin Shot, < 50 MPH (-BS) 0.7 0.7 0.45 0.2
Other Shot (-A) 0.75 0.75 0.5 0.25

Table A.5: Strike/Return Categories and Weights
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A.1.6 Non-Serve Speed + Spin Model

)\SUPW/ AFLS/ )\NI / ASUC]PW/

)\RSUPW ARFLS )\R ARSUUPW
Topspin Shot, > 85 MPH (-TF) 0.82 0.82 0.57 0.32
Backspin Shot, > 85 MPH (-BF) 0.78 0.78 0.53 0.28
Topspin Shot, < 50 MPH (-TS) 0.72 0.72 0.47 0.22
Backspin Shot, < 50 MPH (-BS) 0.68 0.68 0.43 0.18
Other Shot (-A) 0.75 0.75 0.5 0.25

Table A.6: Strike/Return Categories and Weights
A.1.7 Shot Type + Spin Model

)\SUPW/ AFLS/ )\NI / ASUDPW/

)\RSUPW AF\‘,FLS )\R ARSUUPW
Topspin Shot (-T) 0.8 0.8 0.55 0.3
Forehand Backspin Shot (-C) 0.8 0.8 0.55 0.3
Backhand Backspin Shot (-S) 0.7 0.7 0.45 0.2
Other Shot (-D) 0.75 0.75 0.5 0.25

Table A.7: Strike/Return Categories and Weights

A.1.8 Estimated Neutral Shot Weight Model

’ Asupi ArLs

ANI

ASUUPW

1 0.75 0.75

0.4333

0.25

Table A.8: Strike Categories and Weights

’ /\RSUPW )\RFLS

Ar

)\RSUDPW

1 0.75 0.75

0.4262

0.25

Table A.9: Return Categories and Weights
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A.2 Model Validation Plots
A.2.1 Spin Model

Strike ESV Validation Return ESV Validation
Spin Model Spin Model
1 1
L]
Number of Shots
Number of Shots
2 ™ 50000 2 ™ 50000
@ 05 @ 100000 & o5
< c @ 100000
s @ 150000 = @ 150000
@ 200000
.
)50 1 0 )50 1
ESV ESV
Figure A.1: Spin Model Validation
A.2.2 Spin + Dropshot Model
Strike ESV Validation Return ESV Validation
Spin + Dropshot Model Spin + Dropshot Model
! 10
5 75-
]
Number of Shots
Number of Shots
% B 50000 % M 50000
o & 100000 o
< = @ 100000
= @ 150000 = @ 150000
@ 200000
.
5 25-
1 025 1
ESV ESV

Figure A.2: Spin + Dropshot Model Validation

A.2.3 Full Speed Model

Strike ESV Validation Return ESV Validation
Full Speed Model Full Speed Model

Number of Shots
- 50000

Number of Shots
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=1 100000 s
« g . L) @ 80000
< @ 150000 <
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1
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050 075 1.00 025 050 1
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Figure A.3: Full Speed Model Validation
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A.2.4 Serve Speed Model

Strike ESV Validation Return ESV Validation
Serve Speed Model Serve Speed Model

1.00-

Number of Shots

Number of Shots
o & 50000 ° 40000
2 050 @ 100000 é:"u' . ® w00
c @ 150000 <
H & 200000 = @ 120000
@ 20000 @ 150000
)25+
0 5 050 0.75 1.00 0.00 025 0.50 75 1
ESV ESV
Figure A.4: Serve Speed Model Validation
A.2.5 Full Speed + Spin Model
Strike ESV Validation Return ESV Validation
Full Speed + Spin Model Full Speed + Spin Model
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o & 50000 © @ 40000
& 0.5¢ W 100000 & 0.5¢ @ 80000
= @ 150000 =
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25- 25-
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ESV ESV
Figure A.5: Full Speed + Spin Model Validation
A.2.6 Non-Serve Speed + Spin Model
Strike ESV Validation Return ESV Validation
Non-Serve Speed + Spin Model Non-Serve Speed + Spin Model
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Figure A.6: Non-Serve Speed + Spin Model Validation
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A.2.7 Shot Type + Spin Model

Strike ESV Validation Return ESV Validation
Shot Type + Spin Model Shot Type + Spin Model
[ ]
Number of Shots
Number of Shots
2 & 50000 -] - 50000
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Figure A.7: Shot Type + Spin Model Validation
A.2.8 Estimated Neutral Shot Weight Model
Strike ESV Validation Return ESV Validation
Estimated Neutral Shot Weight Model Estimated Neutral Shot Weight Model
Number of Shots Number of Shots
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5o Py 100 .00 55 50
ESV ESV

Figure A.8: Estimated Neutral Shot Weight Model Validation
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